Lewis-Acidic PtIr Multipods Enable High-performance Li-O2 Batteries

2021 
The sluggish oxygen reaction kinetics concomitant with the high overpotentials and parasitic reactions from cathodes and solvents is the major challenge in aprotic lithium-oxygen (Li-O2 ) batteries. Herein, PtIr multipods with a low Lewis acidity of the Pt atoms are reported as an advanced cathode for improving overpotentials and stabilities. DFT calculations disclose that electrons have a strong disposition to transfer from Ir to Pt, since Pt has a higher electronegativity than Ir, resulting in a lower Lewis acidity of the Pt atoms than that on the pure Pt surface. The low Lewis acidity of Pt atoms on the PtIr surface entails a high electron density and a down-shifting of the d-band center, thereby weakening the binding energy towards intermediates (LiO2 ), which is the key in achieving low oxygen-reduction-reaction (ORR) and oxygen-evolution-reaction (OER) overpotentials. The Li-O2 cell based on PtIr electrodes exhibits a very low overall discharge/charge overpotential (0.44 V) and an excellent cycle life (180 cycles), outperforming the bulk of reported noble-metal-based cathodes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    0
    Citations
    NaN
    KQI
    []