Short Hairpin RNA Knockdown of Connective Tissue Growth Factor by Ultrasound-Targeted Microbubble Destruction Improves Renal Fibrosis

2016 
Abstract The purpose of this study was to evaluate whether ultrasound-targeted microbubble destruction transfer of interfering RNA against connective tissue growth factor (CTGF) in the kidney would ameliorate renal fibrosis in vivo . A short hairpin RNA (shRNA) targeting CTGF was cloned into a tool plasmid and loaded onto the surface of a cationic microbubble product. A unilateral ureteral obstruction (UUO) model in mice was used to evaluate the effect of CTGF knockdown. Mice were administered the plasmid-carrying microbubble intravenously, and ultrasound was applied locally to the obstructed kidney. Mice undergoing a sham UUO surgery and untreated UUO mice were used as disease controls, and mice administered plasmid alone, plasmid with ultrasound treatment and microbubbles and plasmid without ultrasound were used as treatment controls. Mice were treated once and then evaluated at day 14. CTGF in the kidney was measured by quantitative reverse transcription polymerase chain reaction and Western blot. Expression of CTGF, transforming growth factor β1, α smooth muscle actin and type I collagen in the obstructed kidney was evaluated by immunohistochemistry. The cohort treated with plasmid-carrying microbubbles and ultrasound exhibited reduced mRNA and protein expression of CTGF ( p p
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    11
    Citations
    NaN
    KQI
    []