A numerical comparison of spherical, spheroidal and ellipsoidal harmonic gravitational field models for small non-spherical bodies: examples for the Martian moons

2015 
We present a comprehensive numerical analysis of spherical, spheroidal, and ellipsoidal harmonic series for gravitational field modeling near small moderately irregular bodies, such as the Martian moons. The comparison of model performances for these bodies is less intuitive and distinct than for a highly irregular object, such as Eros. The harmonic series models are each associated with a distinct surface, i.e., the Brillouin sphere, spheroid, or ellipsoid, which separates the regions of convergence and possible divergence for the parent infinite series. In their convergence regions, the models are subject only to omission errors representing the residual field variations not accounted for by the finite degree expansions. In the regions inside their respective Brillouin surfaces, the models are susceptible to amplification of omission errors and possible divergence effects, where the latter can be discerned if the error increases with an increase in the maximum degree of the model. We test the harmonic series models on the Martian moons, Phobos and Deimos, with moderate oblateness of \(<\)0.4. The possible divergence effects and amplified omission errors of the models are illustrated and quantified. The three models yield consistent results on a bounding sphere of Phobos in their common convergence region, with relative errors in potential of \(\sim \)0.01 and \(\sim \)0.001 % for expansions up to degree 10 and degree 20 respectively. On the surface of Phobos, the spherical and spheroidal models up to degree 10 both have maximum relative errors of \(\sim \)1 % in potential and \(\sim \)100 % in acceleration due ostensibly to divergence effect. Their performances deteriorate more severely on the more irregular Deimos. The ellipsoidal model exhibits much less distinct divergence behavior and proves more reliable in modeling both potential and acceleration, with respective maximum relative errors of \(\sim \)1 and \(\sim \)10 %, on both bodies. Our results show that for the Martian moons and other such moderately irregular bodies, the ellipsoidal harmonic series should be considered preferentially for gravitational field modeling.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    38
    Citations
    NaN
    KQI
    []