Synthesis, characterization and utilization of oxygen vacancy contained metal oxide semiconductors for energy and environmental catalysis.

2021 
Developing novel functional materials with promising desired properties in enhancing energy conversion and lowering the catalytic reaction barriers is essential for the demand to solve the increasingly severe energy and environmental crisis nowadays. Metal oxide semiconductors (MOS) are widely used in the field of catalysis because of its excellent catalytic characteristics. Introduction of defects, in addition to the adjustment of composition and atomic arrangement in the materials can effectively improve the materials' catalytic performance. Especially, introducing oxygen vacancies (OVs) into the lattice structure of MOS has been developed as a facile route to improve MOS's optical and electronic transmission characteristics. And a large number of metal oxides with rich OVs have been served in oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), carbon dioxide reduction reaction (CO2-RR) photo-degradation of organic pollutants, etc. This small review briefly outlines some preparation techniques to introduce OVs into MOS, and the characterization techniques to identify and quantify the OVs in MOS. The applications of OVs contained MOS especially in energy and environmental catalysis areas are also discussed. The effects of OVs types and concentrations on the catalytic performances are deliberated. Finally, the defective structure-catalytic property relationship is highlighted, and the future status and opportunities of MOS containing OVs in the catalytic field are suggested.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    143
    References
    6
    Citations
    NaN
    KQI
    []