Solvothermal method to prepare graphene quantum dots by hydrogen peroxide

2016 
Abstract Graphene quantum dots (GQDs) have been synthesized by different chemical methods in recent years. For conventional chemical methods, it is inevitable to introduce a large amount of impurities in the preparation process. Long time of dialysis process increases the time cost extremely. Herein, we report a one-step solvothermal method for synthesizing GQDs with the application of hydrogen peroxide in N, N-Dimethylformamide (DMF) environment, which completely avoids the use of concentrated sulphuric acid and nitric acid to treat raw material and introduces no impurity in whole preparation process simultaneously for the first time. Pure GQDs can be obtained after evaporation/redissolution and filtration process with a strong blue emission at 15% quantum yield. This solvothermal method, not requiring dialysis process and complicated equipments, exhibits simple, eco-friendly and low time-cost properties. Besides high quantum yields, the as-prepared GQDs also show good photoluminescence stability in different pH conditions. The optical properties, morphology and structure of GQDs were studied by various equipments, implying potential application in biomedical fields and electronic device.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    44
    Citations
    NaN
    KQI
    []