Heusler compounds for spin caloritronics: Large magneto-Seebeck effects in magnetic tunnel junctions

2017 
The field of spin caloritronics studies the interplay between charge-, heat- and spin-currents, which are initiated by temperature gradients in magnetic nanostructures. A plethora of new phenomena has been discovered that promises, e.g., to make wasted heat in electronic devices useable or to provide new read-out mechanisms for information. However, only few materials have been studied so far with Seebeck voltages of only some {\mu}V, which hampers applications. Here, we demonstrate that half-metallic Heusler compounds are hot candidates for enhancing the size of spin-dependent thermoelectric effects. This becomes evident when we consider the asymmetry of the spin-split density of electronic states around the Fermi level that determines the spin-dependent thermoelectric transport in a magnetic tunnel junction. We identify Co$_2$FeAl and Co$_2$FeSi Heusler compounds as ideal due to their energy gaps in the minority density of states, and demonstrate devices with substantially larger Seebeck voltages and tunnel magneto-Seebeck effect ratios than the commonly used Co-Fe-B based junctions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    0
    Citations
    NaN
    KQI
    []