language-icon Old Web
English
Sign In

Quench Protection of DI-BSCCO Coil

2015 
Abstract Quench protection is one of the most important requirements for the practical application of high-temperature-superconducting (HTS) coils. Quench protection requires that early detection of a developing quench event is followed by rapid reduction of the operating current. However, such quench detection is very difficult because HTS wire produces heat only locally due to the very slow propagation velocity of a normal zone. Excellent high voltage insulation performance is required if the current is to be reduced rapidly in a large-scale superconducting application with very large inductance. Thus it is important to investigate the behavior of coils with various decay time constants, and to detect voltages on very short time scales. This goal remains to be achieved. In the present study we built test coil and a full-scale pole coil for a 20 MW motor for use in experiments on quench protection, and parameterized the relation between the decay time constant and the detecting voltage, using a conventional balance circuit to detect the quench, which was generated by gradually raising the temperature of the coils. The results verify that a balance circuit can be used for quench detection. For example, when the current decay time constant is 4 seconds, the test coil can be protected even with a detecting voltage of 0.15 volts, despite a significant heat production rate of 126 W. We also confirmed that the full-scale pole coil, with a decay time constant of 20 seconds, can be protected with a detecting voltage of 0.06 V.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    11
    Citations
    NaN
    KQI
    []