Sn and Y co-doped BaCo0.6Fe0.4O3-δ cathodes with enhanced oxygen reduction activity and CO2 tolerance for solid oxide fuel cells

2021 
Abstract Applying mixed oxygen ionic and electronic conducting (MIEC) oxides as the cathode offers a promising solution to enhance the performance of solid oxide fuel cells (SOFCs). However, the phase instability in CO2-containing air and sluggish oxygen reduction activity of MIEC cathodes remain a long-term challenge for optimizing the electrochemical performance of SOFCs. Herein, a heterovalent co-doping strategy is proposed to enhance the oxygen reduction activity and CO2 tolerance of SOFCs cathodes, which can be demonstrated by developing a novel BaCo0.6Fe0.4O3-δ (BCF)-based MIEC oxide, BaCo0.6Fe0.2Sn0.1Y0.1O3-δ (BCFSY). In addition to improving the stability of BCF-based perovskites, this strategy achieves an optimized balance of ionic mobility and oxygen vacancies due to the synergies between the effects of the co-dopants. Compared with single-doped materials, BCFSY exhibits improved CO2 tolerance and considerably higher ORR activity, which is reflected in a significantly lower polarization resistance of 0.15 Ω cm2 at 600°C. The results of this work provide an efficient tactic for designing electrode materials for SOFCs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    0
    Citations
    NaN
    KQI
    []