A low-dose combination of ketamine and guanosine counteracts corticosterone-induced depressive-like behavior and hippocampal synaptic impairments via mTORC1 signaling

2021 
Abstract Ketamine exhibits rapid and sustained antidepressant responses, but its repeated use may cause adverse effects. Augmentation strategies have been postulated to be useful for the management/reduction of ketamine's dose and its adverse effects. Based on the studies that have suggested that ketamine and guanosine may share overlapping mechanisms of action, the present study investigated the antidepressant-like effect of subthreshold doses of ketamine and guanosine in mice subjected to repeated administration of corticosterone (CORT) and the role of mTORC1 signaling for this effect. The ability of the treatment with ketamine (0.1 mg/kg, i.p.) plus guanosine (0.01 mg/kg, p.o.) to counteract the depressive-like behavior induced by CORT (20 mg/kg, p.o., for 21 days) in mice, was paralleled with the prevention of the CORT-induced reduction on BDNF levels, Akt (Ser473) and GSK-3β (Ser9) phosphorylation, and PSD-95, GluA1, and synapsin immunocontent in the hippocampus. No changes on mTORC1 and p70S6K immunocontent were found in the hippocampus and prefrontal cortex of any experimental group. No alterations on BDNF, Akt/GSK-3β, mTORC1/p70S6K, and synaptic proteins were observed in the prefrontal cortex of mice. The antidepressant-like and pro-synaptogenic effects elicited by ketamine plus guanosine were abolished by the pretreatment with rapamycin (0.2 nmol/site, i.c.v., a selective mTORC1 inhibitor). Our results showed that the combined administration of ketamine and guanosine at low doses counteracted CORT-induced depressive-like behavior and synaptogenic disturbances by activating mTORC1 signaling. This study supports the notion that the combined administration of guanosine and ketamine may be a useful therapeutic strategy for the management of MDD.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    85
    References
    1
    Citations
    NaN
    KQI
    []