Investigating Multi-Mycotoxin Exposure in Occupational Settings: A Biomonitoring and Airborne Measurement Approach.

2021 
Investigating workplace exposure to mycotoxins is of the utmost importance in supporting the implementation of preventive measures for workers. The aim of this study was to provide tools for measuring mycotoxins in urine and airborne samples. A multi-class mycotoxin method was developed in urine for the determination of aflatoxin B1, aflatoxin M1, ochratoxin A, ochratoxin α, deoxynivalenol, zearalenone, α-zearalenol, β-zearalenol, fumonisin B1, HT2-toxin and T2-toxin. Analysis was based on liquid chromatography-high resolution mass spectrometry. Sample pre-treatments included enzymatic digestion and an online or offline sample clean-up step. The method was validated according to the European Medicines Agency guidance procedures. In order to estimate external exposure, air samples collected with a CIP 10 (Capteur Individuel de Particules 10) personal dust sampler were analyzed for the quantification of up to ten mycotoxins, including aflatoxins, ochratoxin A, deoxynivalenol, zearalenone, fumonisin B1 and HT-2 toxin and T-2 toxin. The method was validated according to standards for workplace exposure to chemical and biological agents EN 482. Both methods, biomonitoring and airborne mycotoxin measurement, showed good analytical performances. They were successfully applied in a small pilot study to assess mycotoxin contamination in workers during cleaning of a grain elevator. We demonstrated that this approach was suitable for investigating occupational exposure to mycotoxins.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    3
    Citations
    NaN
    KQI
    []