Evolution of dissolved organic matter during artificial groundwater recharge with effluent from underutilized WWTP and the resulting facilitated transport effect.

2021 
Abstract Currently, the interaction between contaminants and dissolved organic matter (DOM) during artificial groundwater recharge (AGR) with effluent from underutilized wastewater treatment plant (WWTP) is unclear. The present study investigated DOM evolution in this AGR scenario. The DOM composition in the inflow was identified to be distinct to that of the outflow due to the release of soil humic acid (HA). The soluble soil HA was then extracted and used in co-transport experiments with tetracycline (TC). The separated HA transport through the soil column exhibited high mobility with mass recovery >92.5% in the effluent. Following the mixing of injected TC and HA, the TC breakthrough in the column increased with HA concentration. TC was heavily adsorbed by the soil without the presence of HA, yet the retention ratios decreased from 63.60% to 53.30% for the HA range of 0–20 mg L−1. An advection-dispersion-retention (ADR) numerical model was developed to effectively quantify the HA-TC co-transport, with results demonstrating the reduction in the TC attachment rate with increasing HA concentrations. Furthermore, batch adsorption experiments, kinetics and isotherms models, and FTIR spectra analysis were implemented to determine the underlying mechanism. The co-transport behavior was observed to be a function of the relative soil sorption affinity between HA and TC. The weaker sorption of the HA-coated TC compared to the separated TC consequently suggests that HA is likely to compete for available soil adsorption sites. Thus, the release of soil humus during AGR can potentially facilitate the transport of the introduced contaminants.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    4
    Citations
    NaN
    KQI
    []