Evaluation of antibody testing for SARS-Cov-2 using ELISA and lateral flow immunoassays

2020 
Background: The SARS-CoV-2 pandemic caused >1 million infections during January-March 2020. There is an urgent need for robust antibody detection approaches to support diagnostics, vaccine development, safe individual release from quarantine and population lock-down exit strategies. The early promise of lateral flow immunoassay (LFIA) devices has been questioned following concerns about sensitivity and specificity. Methods: We used a panel of plasma samples designated SARS-CoV-2 positive (from SARS-CoV-2 RT-PCR-positive individuals; n=40) and negative (samples banked in the UK prior to December-2019 (n=142)). We tested plasma for SARS-Cov-2 IgM and IgG antibodies by ELISA and using nine different commercially available LFIA devices. Results: ELISA detected SARS-CoV-2 IgM or IgG in 34/40 individuals with an RT-PCR-confirmed diagnosis of SARS-CoV-2 infection (sensitivity 85%, 95%CI 70-94%), vs 0/50 pre-pandemic controls (specificity 100% [95%CI 93-100%]). IgG levels were detected in 31/31 RT-PCR-positive individuals tested ≥10 days after symptom onset (sensitivity 100%, 95%CI 89-100%). IgG titres rose during the 3 weeks post symptom onset and began to fall by 8 weeks, but remained above the detection threshold. Point estimates for the sensitivity of LFIA devices ranged from 55-70% versus RT-PCR and 65-85% versus ELISA, with specificity 95-100% and 93-100% respectively. Within the limits of the study size, the performance of most LFIA devices was similar. Conclusions: The performance of current LFIA devices is inadequate for most individual patient applications. ELISA can be calibrated to be specific for detecting and quantifying SARS-CoV-2 IgM and IgG and is highly sensitive for IgG from 10 days following symptoms onset.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    113
    Citations
    NaN
    KQI
    []