Renewable Material-derived Biochars for the Efficient Removal of 2,4-Dichlorophen from Aqueous Solution: Adsorption/Desorption Mechanisms

2017 
This study investigated the efficiency of peanut hull (PBC), bush branch (BBC), Spartina alterniflora (SBC), and rape straw (RBC) in removing 2,4-dichlorophen (2,4-DCP) from an aqueous solution. The 2,4-DCP removal efficiency of the four kinds of biochars (BCs) increased in the order BBC > PBC > SBC > RBC. The adsorption process was affected by the pH, contact time, temperature, BC’s particle size, and dosage. Based on the results of Fourier transform infrared spectrometry (FTIR) and scanning electron microscope (SEM), the adsorption mechanism of 2,4-DCP was associated with the functional groups and the microtissue and structure of BCs. Furthermore, the organic components of the BCs played an essential role during the adsorption process of the 2,4-DCP. The remediation of organic pollutants by BCs is a complicated process that is characterized by the physical-chemical reaction between the two components (organic pollutants and BCs).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    3
    Citations
    NaN
    KQI
    []