A dark matter profile to model diverse feedback-induced core sizes of $\Lambda$CDM haloes

2020 
We analyze the cold dark matter density profiles of 54 galaxy halos simulated with FIRE-2 galaxy formation physics, each resolved within $0.5\%$ of the halo virial radius. These halos contain galaxies with masses that range from ultra-faint dwarfs ($M_\star \simeq 10^{4.5} M_{\odot}$) to the largest spirals ($M_\star \simeq 10^{11} M_{\odot}$) and have density profiles that are both cored and cuspy. We characterize our results using a new analytic density profile that extends the standard Einasto form to allow for a pronounced constant-density core in the resolved innermost radius. With one additional core-radius parameter, $r_{c}$, this {\em core-Einasto} profile is able to characterize the shape and normalization of our feedback-impacted dark matter halos. In order to enable comparisons with observations, we provide fitting functions for $r_{c}$ and other profile parameters as a function of both $M_\star$ and $M_{\star}/M_{\rm halo}$. In agreement with similar studies done in the literature, we find that dark matter core formation is most efficient at the characteristic stellar-mass to halo-mass ratio $M_\star/M_{\rm halo} \simeq 5 \times 10^{-3}$, or $M_{\star} \sim 10^9 \, M_{\odot}$, with cores that are roughly the size of the galaxy half-light radius, $r_{c} \simeq 1-5$ kpc. Furthermore, we find no evidence for core formation at radii $\gtrsim 100\ \rm pc$ in galaxies with $M_{\star}/M_{\rm halo} < 5\times 10^{-4}$ or $M_\star \lesssim 10^6 \, M_{\odot}$. For Milky Way-size galaxies, baryonic contraction often makes halos significantly more concentrated and dense at the stellar half-light radius than dark matter only runs. However, even at the Milky Way scale, FIRE-2 galaxy formation still produces small dark matter cores of $\simeq 0.5-2$ kpc in size. Recent evidence for a ${\sim} 2$ kpc core in the Milky Way's dark matter halo is consistent with this expectation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    143
    References
    31
    Citations
    NaN
    KQI
    []