The anti-inflammatory effect of omega-3 polyunsaturated fatty acids dramatically decreases by iron in diabetic rat's hippocampus

2020 
Abstract Aims Receptor for advanced glycation end products (RAGE) production is induced by diabetes. Microglial cells are activated by RAGE and produce inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and oxidative stress markers. Persistent production of TNF-α can provide a link between diabetes and Alzheimer's disease (AD). The purpose of this study was to investigate the effect of concomitant use of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) with iron supplements on microglial cell activation and inflammatory conditions in the hippocampus of type 2 diabetic rats. Main methods Diabetic and normal Wistar rats were divided into six groups. Oxidative stress markers (total oxidant status (TOS), total antioxidant capacity (TAC), and malondialdehyde (MDA(), mRNA expression and protein levels of RAGE and TNF-α were evaluated in the hippocampus of the controls and supplemented with ferrous sulfate and ω-3 PUFAs alone and together rats. Also, the entry of microglia cells into the hippocampus was evaluated by immunohistochemistry technique. Key findings Levels of the microglial activation (2.4 fold, p  Significance These observations indicated that the co-supplementation of ferrous sulfate with ω-3 PUFAs decreases the anti-inflammatory ability of ω-3 PUFAs in the hippocampus of diabetic rats via RAGE/TNF-α-induced oxidative stress pathway up-regulation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    2
    Citations
    NaN
    KQI
    []