Hybrid additive manufacturing of precision engineered ceramic components

2019 
Purpose The purpose of this paper is to develop a hybrid additive/subtractive manufacturing platform for the production of high density ceramic components. Design/methodology/approach Fabrication of near-net shape components is achieved using 96 per cent Al3O2 ceramic paste extrusion and a planarizing machining operations. Sacrificial polymer support can be used to aid the creation of overhanging or internal features. Post-processing using a variety of machining operations improves tolerances and fidelity between the component and CAD model while reducing defects. Findings This resultant three-dimensional monolithic ceramic components demonstrated post sintering tolerances of ±100 µm, surface roughness’s of ∼1 µm Ra, densities in excess of 99.7 per cent and three-point bending strength of 221 MPa. Originality/value This method represents a novel approach for the digital fabrication of ceramic components, which provides improved manufacturing tolerances, part quality and capability over existing additive manufacturing approaches.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    1
    Citations
    NaN
    KQI
    []