Sound Intensity-dependent Multiple Tonotopic Organizations and Complex Sub-threshold Alterations of Auditory Response Across Sound Frequencies in the Thalamic Reticular Nucleus.

2021 
Abstract The thalamic reticular nucleus (TRN), a cluster of GABAergic cells, modulates sensory attention and perception through its inhibitory projections to thalamic nuclei. Cortical and thalamic topographic projections to the auditory TRN are thought to compose tonotopic organizations for modulation of thalamic auditory processing. The present study determined tonotopies in the TRN and examined interactions between probe and masker sounds to obtain insights into temporal processing associated with tonotopies. Experiments were performed on anesthetized rats, using juxta-cellular recording and labeling techniques. Following determination of tonotopies, effects of sub-threshold masker sound stimuli on onset and late responses evoked by a probe sound were examined. The main findings are as follows. Tonotopic organizations were recognized in cell location and axonal projection. Tonotopic gradients and their clarities were diverse, depending on sound intensity, response type and the tiers of the TRN. Robust alterations in response magnitude, latency and/or burst spiking took place following masker sounds in either a broad or narrow range of frequencies that were close or far away from the probe sound frequency. The majority of alterations were suppression recognizable up to 600 ms in the interval between masker and probe sounds, and directions of alteration differed depending on the interval. Finally, masker sound effects were associated with tonotopic organizations. These findings suggest that the auditory TRN is comprised of sound intensity-dependent multiple tonotopic organizations, which could configure temporal interactions of auditory information across sound frequencies and impose complex but spatiotemporally structured influences on thalamic auditory processing.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    101
    References
    0
    Citations
    NaN
    KQI
    []