Evidence of a non universal stellar Initial Mass Function. Insights from HST optical imaging of 6 Ultra Faint Dwarf Milky Way Satellites

2018 
Using deep HST/ACS observations, we demonstrate that the sub-solar stellar initial mass function (IMF) of 6 ultra-faint dwarf Milky Way Satellites (UFDs) is more bottom light than the IMF of the Milky Way disk. Our data have a lower mass limit of about 0.45 M$_{\odot}$, while the upper limit is $\sim 0.8$ M$_\odot$, set by the turn-off mass of these old, metal poor systems. If formulated as a single power law, we obtain a shallower IMF slope than the "Salpeter" value of $-2.3$, ranging from $-1.01$ for Leo IV, to $-1.87$ for Bo\"otes I. The significance of such deviations depends on the galaxy and is typically 95\% or more. When modeled as a log-normal, the IMF fit results in a larger peak mass than in the Milky Way disk, however a Milky Way disk value for the characteristic system mass ($\sim0.22$ M$_{\odot}$) is excluded only at 68\% significance, and only for some UFDs in the sample. We find that the IMF slope correlates well with the galaxy mean metallicity and, to a lesser degree, with the velocity dispersion and the total mass. The strength of the observed correlations is limited by shot noise in the number of observed stars, but future space-based missions like JWST and WFIRST will both enhance the number of dwarf Milky Way Satellites that can be studied in such detail, and the observation depth for individual galaxies.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    0
    Citations
    NaN
    KQI
    []