Role of transposons in origin and evolution of plant XY sex chromosomes

2015 
: The XY sex-determination system is crucial for plant reproduction. However, little is known about the mechanism of the origin and evolution of the XY sex chromosomes. It has been believed that a pair of autosomes is evolved to produce young sex chromosomes (neo-X chromosome and neo-Y chromosome) by loss of function or gain of function mutation, which influences the development of pistil or stamen. With the aggravation of the recombination suppression between neo-X and neo-Y and consequent expanding of the non-recombination region, the proto-sex chromosomes were finally developed to heteromorphic sex chromosomes. Accumulation of repetitive sequences and DNA methylation were probably involved in this process. Transposons, as the most abundant repetitive sequences in the genome, might be the initial motivation factors for the evolution of sex chromosome. Moreover, transposons may also increase heterochromatin expansion and recombination suppression of sex chromosome by local epigenetics modification. In this review, we summarize the function of transposon accumulation and the relationship between transposon and heterochromatization in the evolution of plant sex chromosome.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []