Transport Properties of Graphene Nanoroads in Boron Nitride Sheets

2012 
We demonstrate that the one-dimensional (1D) transport channels that appear in the gap when graphene nanoroads are embedded in boron nitride (BN) sheets are more robust when they are inserted at AB/BA grain boundaries. Our conclusions are based on ab initio electronic structure calculations for a variety of different crystal orientations and bonding arrangements at the BN/C interfaces. This property is related to the valley Hall conductivity present in the BN band structure and to the topologically protected kink states that appear in continuum Dirac models with position-dependent masses.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    73
    Citations
    NaN
    KQI
    []