Starch and Starch-Associated Proteins: Impacts on Wheat Grain Quality

2020 
Wheat storage proteins have been historically examined and periodically established to be the major determinant of wheat quality. Gluten proteins largely contribute to the formation of viscoelastic network in a dough, enabling processing of wheat to food products including bread. More recently starch, the major component constituting 60–70% of wheat grain, is understood to play key roles in flour quality, dough functionality and end product and nutritional quality. Starch is composed of two neutral macromolecules of glucose, amylose and amylopectin. The structural differences between amylose and amylopectin are predominantly dependent on the extent and distribution of α-1,4 and α-1,6 linkages that connect the glucose units to form these two polymers. The functional properties of starch as governed by its structure, molecular organisation, granule morphology and size distribution influence dough behaviour during processing, differentially impacting the end product qualities. Also, varyingly important are the roles of starch granule associated proteins, comprised of both surface proteins and granule-integral proteins with enzyme functions, in driving starch responses in a complex dough matrix system. This chapter aims to provide an extensive re-view on how starch, associated proteins and starch-protein interactions influence functional properties of food systems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    121
    References
    0
    Citations
    NaN
    KQI
    []