Representing Organic Compound Oxidation in Chemical Mechanisms for Policy-Relevant Air Quality Models under Background Troposphere Conditions

2020 
This intercomparison has taken thirteen chemical mechanisms and compared how they treat VOC oxidation and degradation and its relationship to the photochemical formation of ozone and hydroxyl radicals. Here, we have looked in some detail at the incremental responses of hydroxyl radicals to incremental additions of a range of organic compounds under conditions appropriate to the background atmosphere. Most of the time, with most organic compounds and most chemical mechanisms, incremental additions of an organic compound led to depletion of hydroxyl radical concentrations. The chemical mechanisms studied demonstrated increasingly negative incremental hydroxyl radical reactivities with increasing carbon numbers for the alkanes ethane, propane and n-butane. Hydroxyl radical incremental reactivities for the simple alkenes, ethylene and propylene, were reasonably consistent across the chemical mechanisms studied. However, this consistent representation did not extend to trans but-2-ene, where reactivity estimates spanned a range of a factor of five. Incremental reactivities were reasonably well-defined for isoprene which was encouraging in view of its importance to background tropospheric chemistry. The most serious discrepancies emerging from this study were found with the aromatics toluene and o-xylene, and with the Master Chemical Mechanism and these are discussed in some detail.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    4
    Citations
    NaN
    KQI
    []