Synthesis and recognition properties of α- d -glucose-based fluorescent crown ethers incorporating an acridine unit

2014 
Two new chiral glucopyranoside-based crown ethers incorporating acridine fluorescent signalling units, 15-membered ligand 1 and 21-membered ligand 2 were synthesized. Their complexation properties toward alkali and alkali earth metal ions, and their enantioselectivity towards chiral ammonium salts were studied by absorption and fluorescence spectroscopic experiments. Macrocycle 1 formed 1:1 complexes with all the metal ions selected and the stability constants were low (lg K < 2.3). The cavity-size of 2 allowed only the complexaton of organic ammonium ions. Crown 2 showed chiral discrimination in case of all the four ammonium salts used as model guest compounds; the highest enantioselectivity (K(R)/K(S) ~3) was observed for the enantiomers of phenylethyl ammonium perchlorate. Ligand 2 forms much more stable complexes with metal ions; the highest stability constant was obtained for the Ca2+ complex (lg K = 6.15). The coordination of metal ions by ligand 2 was accompanied by marked fluorescence enhancement, whereas the binding of ammonium ions by the same species resulted in significant fluorescence quenching.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    8
    Citations
    NaN
    KQI
    []