Gas-Phase Organic Oxidation Chemistry and Atmospheric Particles

2019 
Organic aerosols comprise a rich mixture of compounds, many generated via nonselective radical oxidation. This produces a plethora of products, most unidentified, and mechanistic understanding has improved with instrumentation. Recent advances include recognition that some peroxy radicals undergo internal H-atom transfer reactions to produce highly oxygenated molecules and recognition that gas-phase association reactions can form higher molecular weight products capable of nucleation under atmospheric conditions. Particles also range from molecular clusters near 1 nm diameter containing a few molecules to coarse particles above 1 μm containing 1 billion or more molecules. A mixture of organics often drives growth of particles. We can describe this via detailed thermodynamics, and we can also describe the physics driving mixing between separate populations containing semi-volatile organics. Finally, fully size-resolved particle microphysics enables detailed comparisons between theory and observations in chamber experiments.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    2
    Citations
    NaN
    KQI
    []