Neural Theorem Provers Do Not Learn Rules Without Exploration.

2019 
Neural symbolic processing aims to combine the generalization of logical learning approaches and the performance of neural networks. The Neural Theorem Proving (NTP) model by Rocktaschel et al (2017) learns embeddings for concepts and performs logical unification. While NTP is promising and effective in predicting facts accurately, we have little knowledge how well it can extract true relationship among data. To this end, we create synthetic logical datasets with injected relationships, which can be generated on-the-fly, to test neural-based relation learning algorithms including NTP. We show that it has difficulty recovering relationships in all but the simplest settings. Critical analysis and diagnostic experiments suggest that the optimization algorithm suffers from poor local minima due to its greedy winner-takes-all strategy in identifying the most informative structure (proof path) to pursue. We alter the NTP algorithm to increase exploration, which sharply improves performance. We argue and demonstate that it is insightful to benchmark with synthetic data with ground-truth relationships, for both evaluating models and revealing algorithmic issues.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    4
    Citations
    NaN
    KQI
    []