Changes in the oxygen content, morphology, and microstructure of Mo-10Nb composite powders during mechanical alloying

2020 
Abstract The prefabrication of Mo-Nb composite powders is an effective way of improving the homogeneity of Mo-10Nb targets, which have broad application prospects in the photoelectric sensor industry. However, this aspect has been rarely addressed so far. Therefore, we prepared Mo-10Nb composite powders by mechanical alloying (MA), and investigated the effects of the experimental parameters such as the milling speed and duration on the particle morphology, size distribution, compositional homogeneity, crystallite size, inner strain, and oxygen content. High-quality Mo-10Nb composite powders with 3-μm spherical particles of narrow size distribution, homogeneous elemental distribution, and nanometric crystalline structure were obtained by implementing optimum MA parameters, viz., a milling speed of 250 rpm and duration of 36 h using an MITR QM-QX-4L omnidirectional ball mill. The mechanically alloyed Mo-10Nb composite powders were prone to oxidation when exposed to air, which led to a sharp increase in the oxygen content to ∼5400 ppm. X-ray photoelectron spectroscopic analysis revealed the presence of Nb2O5, MoO2, and MoO3 on the surface of the Mo-10Nb particle. We believe that this study demonstrates an interesting strategy for the fabrication of high-quality Mo-10Nb targets.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    3
    Citations
    NaN
    KQI
    []