The Double-Edged Sword of Activation-Induced Cytidine Deaminase

2005 
Activation-induced cytidine deaminase (AID) is required for Ig class switch recombination, a process that introduces DNA double-strand breaks in B cells. We show in this study that AID associates with the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) promoting cell survival, presumably by resolving DNA double-strand breaks. Wild-type cells expressing AID mutants that fail to associate with DNA-PKcs or cells deficient in DNA-PKcs or 53BP1 expressing wild-type AID accumulate γH2AX foci, indicative of heightened DNA damage response. Thus, AID has two independent functions. AID catalyzes cytidine deamination that originates DNA double-strand breaks needed for recombination, and it promotes DNA damage response and cell survival. Our results thus resolve the paradox of how B cells undergoing DNA cytidine deamination and recombination exhibit heightened survival and suggest a mechanism for hyperIgM type II syndrome associated with AID mutants deficient in DNA-PKcs binding.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    75
    Citations
    NaN
    KQI
    []