Base-substitution mutation rate across the nuclear genome of Alpheus snapping shrimp and the timing of isolation by the Isthmus of Panama

2020 
Abstract The formation of the Isthmus of Panama and final closure of the Central American Seaway (CAS) provides an independent calibration point for examining the rate of DNA substitutions. This vicariant event has been widely used to estimate the substitution rate across mitochondrial genomes and to date evolutionary events in other taxonomic groups. Nuclear sequence data is increasingly being used to complement mitochondrial datasets for phylogenetic and evolutionary investigations; these studies would benefit from information regarding the rate and pattern of DNA substitutions derived from the nuclear genome. To estimate this genomewide neutral mutation rate (μ), genotype-by-sequencing (GBS) datasets were generated for three transisthmian species pairs in Alpheus snapping shrimp. Using a Bayesian coalescent approach (G-PhoCS) applied to 44,960 GBS loci, we estimated μ to be 2.64E-9 substitutions/site/year, when calibrated with the closure of the CAS at 3 Ma. This estimate is remarkably similar to experimentally derived mutation rates in model arthropod systems, strengthening the argument for a recent closure of the CAS. To our knowledge this is the first use of transisthmian species pairs to calibrate the rate of molecular evolution from GBS data.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    80
    References
    0
    Citations
    NaN
    KQI
    []