Inhibition of Pref‐1 (preadipocyte factor 1) by oestradiol in adolescent girls with anorexia nervosa is associated with improvement in lumbar bone mineral density

2013 
Objective Adolescents with anorexia nervosa (AN) are amenorrheic and have decreased bone mass accrual and low bone mineral density (BMD). The regulation of mesenchymal stem cell differentiation is an important factor governing bone formation. Preadipocyte factor 1 (Pref-1), an inhibitor of adipocyte and osteoblast differentiation, is elevated in states of oestrogen deficiency. In this study, we aim to (i) investigate effects of transdermal oestradiol on Pref-1 in adolescent girls with AN, and (ii) examine associations of changes in Pref-1 with changes in lumbar BMD and bone turnover markers. Design Adolescent girls with AN and normal-weight controls were studied cross-sectionally. Girls with AN were examined longitudinally in a double-blind study and received transdermal oestradiol (plus cyclic medroxyprogesterone) or placebo for 12 months. Patients Sixty-nine girls (44 with AN, 25 normal-weight controls) 13–18 years were studied at baseline; 22 AN girls were followed prospectively. Measurements Pref-1 levels, bone formation and resorption markers, and BMD. Results Pref-1 levels decreased in girls with AN after treatment with transdermal oestradiol compared with placebo (−0·015 ± 0·016 vs 0·060±0·026 ng/ml, P = 0·01), although at baseline, levels did not differ in AN vs controls (0·246 ± 0·015 vs 0·267 ± 0·022 ng/ml). Changes in Pref-1 over 12 months correlated inversely with changes in lumbar BMD (r = −0·48, P = 0·02) and positively with changes in CTX (r = 0·73, P = 0·006). Conclusions For the first time, we show that Pref-1 is negatively regulated by oestradiol in adolescent girls with AN. Inhibition of Pref-1 may mediate the beneficial effects of transdermal oestradiol replacement on BMD in girls with AN.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    26
    Citations
    NaN
    KQI
    []