Tunable Bandgap Narrowing Induced by Controlled Molecular Thickness in 2D Mica Nanosheets

2015 
Bandgap engineering of atomically thin 2D crystals is critical for their applications in nanoelectronics, optoelectronics, and photonics. Here, we report a simple but rather unexpected approach for bandgap engineering of muscovite-type mica nanosheets (KAl3Si3O10(OH)2) via controlled molecular thickness. Through density functional calculations, we analyze electronic structures in 2D mica nanosheets and develop a general picture for tunable bandgap narrowing induced by controlled molecular thickness. From conducting atomic force microscopy, we observe an abnormal bandgap narrowing in 2D mica nanosheets, contrary to well-known quantum size effects. In mica nanosheets, decreasing the number of layers results in reduced bandgap energy from 7 to 2.5 eV, and the bilayer case exhibits a semiconducting nature with ∼2.5 eV. Structural modeling by transmission electron microscopy and density functional calculations reveal that this bandgap narrowing can be defined as a consequence of lattice relaxations as well as ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    27
    Citations
    NaN
    KQI
    []