Real-time data analysis for medical diagnosis using FPGA-accelerated neural networks

2018 
Background Real-time analysis of patient data during medical procedures can provide vital diagnostic feedback that significantly improves chances of success. With sensors becoming increasingly fast, frameworks such as Deep Neural Networks are required to perform calculations within the strict timing constraints for real-time operation. However, traditional computing platforms responsible for running these algorithms incur a large overhead due to communication protocols, memory accesses, and static (often generic) architectures. In this work, we implement a low-latency Multi-Layer Perceptron (MLP) processor using Field Programmable Gate Arrays (FPGAs). Unlike CPUs and Graphics Processing Units (GPUs), our FPGA-based design can directly interface sensors, storage devices, display devices and even actuators, thus reducing the delays of data movement between ports and compute pipelines. Moreover, the compute pipelines themselves are tailored specifically to the application, improving resource utilization and reducing idle cycles. We demonstrate the effectiveness of our approach using mass-spectrometry data sets for real-time cancer detection.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    15
    Citations
    NaN
    KQI
    []