A phase II study of efficacy, toxicity, and the potential impact of genomic alterations on response to eribulin mesylate in combination with trastuzumab and pertuzumab in women with human epidermal growth factor receptor 2 (HER2)+ metastatic breast cancer.

2021 
There are limited data on trastuzumab–pertuzumab (HP)-based treatments beyond the first-line, HER2+ metastatic breast cancer (MBC) setting. We conducted a phase II study of eribulin mesylate, which extends survival in MBC, with HP in patients with previously treated HER2+ MBC to evaluate efficacy, toxicity, and genomic alterations driving therapeutic response. After a run-in phase for eribulin dosing, two cohorts were enrolled (Cohort A-no prior pertuzumab; Cohort B-prior pertuzumab). All patients received eribulin 1.4 mg/m2 on days 1, 8 with standard-dose HP on day 1 (21-day cycles). The primary endpoint was objective response rate (ORR). Genomic characterization via whole exome sequencing (WES) was completed on tumor DNA and matched germline DNA from 19 patients. The six-patient run-in established a dose of eribulin 1.4 mg/m2 with HP. Cohorts A and B enrolled 17 and 7 patients, respectively. Accrual stopped early due to an evolving treatment landscape and slow enrollment. The ORR was 26.3% (95% Confidence Interval [CI] 9.2–51.2%) in Cohort A and 0% in Cohort B (95% CI 0–41.0%). WES revealed more frequent alterations in TP53 (p   0.05) in patients without clinical benefit (disease control for < 24 weeks) which was not significant after multiple hypothesis correction. Eribulin–HP had manageable toxicity and modest clinical activity in patients without prior pertuzumab exposure. This study provides a preliminary landscape of somatic alterations in this patient cohort. Our data add to the literature on how genomic alterations may predict for therapy response/resistance, as we work to individualize choices in a quickly evolving HER2+ MBC treatment landscape. www.clinicaltrials.gov , NCT01912963. Registered 24 July 2013.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    0
    Citations
    NaN
    KQI
    []