RNA silencing by CRISPR in plants does not require Cas13

2021 
RNA-targeting CRISPR-Cas can provide potential advantages over DNA editing, such as avoiding pleiotropic effects of genome editing, providing precise spatiotemporal regulation and expanded function including anti-viral immunity. Here, we report the use of CRISPR-Cas13 in plants to reduce both viral and endogenous RNA. Unexpectedly, we discovered that crRNA designed to guide Cas13 could, in the absence of the Cas13 protein, cause substantial reduction in RNA levels as well. We demonstrate Cas13-independent guide-induced gene silencing (GIGS) in three plant species, including stable transgenic Arabidopsis. We determined that GIGS utilizes endogenous RNAi machinery despite the fact that crRNA are unlike canonical triggers of RNAi such as miRNA, hairpins or long double-stranded RNA. These results suggest that GIGS offers a novel and flexible approach to RNA reduction with potential benefits over existing technologies for crop improvement. Our results demonstrate that GIGS is active across a range of plant species, evidence similar to recent findings in an insect system, which suggests that GIGS is potentially active across many eukaryotes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    73
    References
    0
    Citations
    NaN
    KQI
    []