In Situ Printing-then-Mixing for Biological Structure Fabrication Using Intersecting Jets

2017 
Although traditional three-dimensional bioprinting technology is suitable for many tissue engineering applications, various biomaterials and constructs call for bioprinting innovations. There is a need for the fabrication of complex structures from reactive biomaterials as well as heterogeneous structures with controlled material compositions. In particular, during reactive material printing, reactive solutions/suspensions that undergo changes in rheological properties or cytocompatibility are not printable using traditional bioprinting approaches that require all components of bioinks to be mixed before deposition. The objective of this study is to develop and implement an intersecting jets-based inkjet bioprinting approach, which enables voxel-resolution printing-then-mixing for the fabrication of biological structures using reactive materials as well as structures having a compositional gradient. Inkjetting is implemented herein as a versatile technique to simultaneously deposit droplets of disparate m...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    13
    Citations
    NaN
    KQI
    []