Experimental study on nanosecond pulsed pin-to-plate discharge in supersonic air flow

2019 
Development of magnetohydrodynamic acceleration technology is expected to improve wind tunnel simulation capability and testing capability. The underlying premise is to produce uniform and stable plasma in supersonic air flow, and gas discharge is an effective way to achieve this. A nanosecond pulsed discharge experimental system under supersonic conditions was established, and a pin-to-plate nanosecond pulsed discharge experiment in Mach 2 air flow was performed to verify that the proposed method produced uniform and stable plasma under supersonic conditions. The results show that the discharge under supersonic conditions was stable overall, but uniformity was not as good as that under static conditions. Increasing the number of pins improved discharge uniformity, but reduced discharge intensity and hence plasma density. Under multi-pin conditions at 1000 Hz, the discharge was almost completely corona discharge, with the main current component being the displacement current, which was smaller than that under static conditions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    0
    Citations
    NaN
    KQI
    []