Artificial Virus Delivers CRISPR-Cas9 System for Genome Editing of Cells in Mice

2017 
CRISPR-Cas9 has emerged as a versatile genome-editing platform. However, due to the large size of the commonly used CRISPR-Cas9 system, its effective delivery has been a challenge and limits its utility for basic research and therapeutic applications. Herein, a multifunctional nucleus-targeting “core-shell” artificial virus (RRPHC) was constructed for the delivery of CRISPR-Cas9 system. The artificial virus could efficiently load with the CRISPR-Cas9 system, accelerate the endosomal escape, and promote the penetration into the nucleus without additional nuclear-localization signal, thus enabling targeted gene disruption. Notably, the artificial virus is more efficient than SuperFect, Lipofectamine 2000, and Lipofectamine 3000. When loaded with a CRISPR-Cas9 plasmid, it induced higher targeted gene disruption efficacy than that of Lipofectamine 3000. Furthermore, the artificial virus effectively targets the ovarian cancer via dual-receptor-mediated endocytosis and had minimum side effects. When loaded with...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    132
    Citations
    NaN
    KQI
    []