Towards more predictive clarification models via experimental determination of flocculent settling coefficient value

2020 
Abstract Improved settleability has become an essential feature of new wastewater treatment innovations. To accelerate adoption of such new technologies, improved clarifier models are needed to help with designing and predicting improvement in settleability. In general, the level of mathematics of settling clarifier models has gone far beyond the level of existing experimental methods available to support these models. To date, even for simple one-dimensional (1D) clarifier models, no experimental method has been described for flocculent settling coefficient (rp). As a consequence, rp cannot be considered as a sludge characteristic and is used as a calibration parameter to achieve observed effluent quality. In this study, we focused on the development of an empirical function based on a simple and practical experimental approach for the calculation of the rp value from sludge characteristics. This approach provided a similar approach as currently taken for hindered settling coefficient calculations (Veslind equation) and allowed for the model to predict effluent quality, thus increasing the power of the 1D model. The threshold of flocculation (TOF), which describes the collision efficiency of particles, directly correlated with the effluent quality of the five tested activated sludge systems and was selected as experimental method. The proposed empirical function between TOF and rp was validated for four years of validating data with five different sludge types operated under different operational conditions and configurations. The good effluent quality prediction with this approach brings us one step closer in making the clarification models more predictive towards effluent quality and clarifier performance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    1
    Citations
    NaN
    KQI
    []