Applying a random projection algorithm to optimize machine learning model for predicting peritoneal metastasis in gastric cancer patients using CT images.

2021 
Abstract Background and Objective Non-invasively predicting the risk of cancer metastasis before surgery can play an essential role in determining which patients can benefit from neoadjuvant chemotherapy. This study aims to investigate and test the advantages of applying a random projection algorithm to develop and optimize a radiomics-based machine learning model to predict peritoneal metastasis in gastric cancer patients using a small and imbalanced computed tomography (CT) image dataset. Methods A retrospective dataset involving CT images acquired from 159 patients is assembled, including 121 and 38 cases with and without peritoneal metastasis, respectively. A computer-aided detection scheme is first applied to segment primary gastric tumor volumes and initially compute 315 image features. Then, five gradients boosting machine (GBM) models embedded with five feature selection methods (including random projection algorithm, principal component analysis, least absolute shrinkage, and selection operator, maximum relevance and minimum redundancy, and recursive feature elimination) along with a synthetic minority oversampling technique, are built to predict the risk of peritoneal metastasis. All GBM models are trained and tested using a leave-one-case-out cross-validation method. Results Results show that the GBM model embedded with a random projection algorithm yields a significantly higher prediction accuracy (71.2%) than the other four GBM models (p Conclusions This study demonstrates that CT images of the primary gastric tumors contain discriminatory information to predict the risk of peritoneal metastasis, and a random projection algorithm is a promising method to generate optimal feature vector, improving the performance of machine learning based prediction models.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    5
    Citations
    NaN
    KQI
    []