Intermittent hypobaric hypoxia improves postischemic recovery of myocardial contractile function via redox signaling during early reperfusion

2011 
Intermittent hypobaric hypoxia (IHH) protects hearts against ischemia-reperfusion (I/R) injury, but the underlying mechanisms are far from clear. ROS are paradoxically regarded as a major cause of myocardial I/R injury and a trigger of cardioprotection. In the present study, we investigated whether the ROS generated during early reperfusion contribute to IHH-induced cardioprotection. Using isolated perfused rat hearts, we found that IHH significantly improved the postischemic recovery of left ventricular (LV) contractile function with a concurrent reduction of lactate dehydrogenase release and myocardial infarct size (20.5 ± 5.3% in IHH vs. 42.1 ± 3.8% in the normoxic control, P < 0.01) after I/R. Meanwhile, IHH enhanced the production of protein carbonyls and malondialdehyde, respective products of protein oxidation and lipid peroxidation, in the reperfused myocardium and ROS generation in reperfused cardiomyocytes. Such effects were blocked by the mitochondrial ATP-sensitive K+ channel inhibitor 5-hydro...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    47
    Citations
    NaN
    KQI
    []