Toxic Activation of an AAA+ Protease by the Antibacterial Drug Cyclomarin A

2019 
Summary ATP-driven bacterial AAA+ proteases have been recognized as drug targets. They possess an AAA+ protein (e.g., ClpC), which threads substrate proteins into an associated peptidase (e.g., ClpP). ATPase activity and substrate selection of AAA+ proteins are regulated by adapter proteins that bind to regulatory domains, such as the N-terminal domain (NTD). The antibacterial peptide Cyclomarin A (CymA) kills Mycobacterium tuberculosis cells by binding to the NTD of ClpC. How CymA affects ClpC function is unknown. Here, we reveal the mechanism of CymA-induced toxicity. We engineered a CymA-sensitized ClpC chimera and show that CymA activates ATPase and proteolytic activities. CymA mimics adapter binding and enables autonomous protein degradation by ClpC/ClpP with relaxed substrate selectivity. We reconstitute CymA toxicity in E . coli cells expressing engineered ClpC and ClpP, demonstrating that gain of uncontrolled proteolytic activity causes cell death. This validates drug-induced overriding of AAA+ protease activity control as effective antibacterial strategy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    11
    Citations
    NaN
    KQI
    []