Thermal Analysis of a Parabolic Trough Collectors with Cylindrical and Fractal Receiver Under Serial-Parallel Configuration

2021 
Solar collectors are one of the higher technologies that involve solar radiation available on surface Earth. However, actually, numerous researches have been developed to improve thermal performance in all system, including surface concentration, receiver, transfer fluid and glass cover. The results of the design, the modeling, and the simulation of a parabolic trough collector and central receiver with three different geometries coupled under serial and parallel configuration are presented in this paper. Different geometries have been proposed in receiver pipe in order to increase transfer surface area and improve thermal efficiency. Each model has been simulated by Computational Fluid Dynamics (CFD) in SolidWorks® software specialized on thermal analysis. As results, the maximum temperature of 86°C has been achieved in this research with two collectors with fractal F1 receiver coupled in parallel configuration. In addition, the lower temperature has been obtained with a single cylindrical collector with a final temperature of 61°C. The principal contribution of this works is the analysis of the best configuration to a solar concentrate system as parabolic trough collector, under a serial or parabolic scheme with the purpose of enhancing the heat transfer on receiver and working fluid. Likewise, a novel design in receiver is proposed based on fractal geometries, which show in the study the best temperature results.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []