Single-strand DNA-nanorod conjugates - tunable anisotropic colloids for on-demand self-assembly.

2020 
Abstract Directed self-assembly uses different stimuli to initiate and control the interaction between nanocrystals. Protonation at reduced pH represents a convenient stimulus for initiating self-assembly. Prior work has focused on protonation-induced hydrogen bonding between peptide or amino acid functionalized nanocrystals for reversible cycling between dispersed and aggregated states. Here, we discuss a fundamentally different approach, in which changes in pH modify the nonspecific interparticle interaction between Au nanorods conjugated with single-stranded (ss) DNA. While electrostatic repulsion stabilizes dispersed suspensions at neutral pH, protonation in acidic solution modifies the DNA corona, turning the interaction between the rods attractive and triggering their self-assembly. Analysis of in-situ electron microscopy of ssDNA-Au nanorods in solution is consistent with a van der Waals attraction of charge-neutral monomers at acidic pH. The results demonstrate ssDNA-conjugated anisotropic nanostructures as versatile building blocks with stimuli-programmable interactions for on-demand self-assembly.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    1
    Citations
    NaN
    KQI
    []