Accurate lateralization and classification of MRI-negative 18F-FDG-PET-positive temporal lobe epilepsy using double inversion recovery and machine-learning.

2021 
Abstract Objective The main objective of this study was to determine the ability of double inversion recovery (DIR) data coupled with machine-learning algorithms to distinguish normal individuals from epileptic subjects and to identify the laterality of the focus side in MRI-negative, PET-positive temporal lobe epilepsy (TLE) patients. Materials and methods We used whole-brain DIR data as the input features with which to train a linear support-vector machine model in 63 participants who underwent high-resolution structural MRI and DIR scans. The subjects included 20 left TLE patients, 19 right TLE patients, and 24 healthy controls (HCs). Results Using the DIR data, we achieved a robust accuracy of 87.30% for discriminating among the left TLE, right TLE, and HC groups as well as 84.61%, 97.72%, and 93.02% prediction accuracies for distinguishing left TLE from right TLE, HC from right TLE, and HC from left TLE, respectively. Interpretation Our experimental results suggest that DIR data coupled with machine-learning algorithms provide a promising approach to identifying MRI-negative TLE patients, especially when fluorodeoxyglucose-PET is not available.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    1
    Citations
    NaN
    KQI
    []