Shear flow generation from the interaction of neoclassical and drift wave transport processes

1994 
Self‐consistent shear flow generation from the interaction of neoclassical and drift wave turbulence effects is investigated. The neoclassical poloidal flow damping is shown to compete with the plasma flow generation driven through the divergence of the Reynolds stress. When there is no external driving force except for the free energy released from toroidal shear flow, the turbulent fluctuations occur as a transient pulse which takes the system along an equilibrium path to a relaxed state. External torques, such as parallel neutral beam injection, are needed to maintain significant fluctuation levels. For a system driven by a fixed ion temperature gradient, although linearly the poloidal shear flow generated substantially reduces the growth rate, the simulation results show that a sequence of nonlinear pulses occurs that eventually build the fluctuations up to a level that is not significantly affected by the poloidal flow. In this new, highly nonlinear state the transport is intermittent, with high flux...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    20
    Citations
    NaN
    KQI
    []