Diagnostic Accuracy of [11C]PIB Positron Emission Tomography for Detection of Cardiac Amyloidosis.

2020 
Abstract Objectives This dual-site study evaluated the diagnostic accuracy of the method. Background Pittsburgh compound ([11C]PIB) positron emission tomography (PIB-PET) has shown promise as a specific and noninvasive method for the diagnosis of cardiac amyloidosis (CA). Methods The study had 2 parts. In the initial study, 51 subjects were included, 36 patients with known CA and increased wall thickness (15 immunoglobulin light chain [AL] and 21 transthyretin [ATTR] amyloidosis) and 15 control patients (7 were nonamyloid hypertrophic and 8 healthy volunteers). Subjects underwent PIB-PET and echocardiography. Sensitivity and specificity of PIB-PET were established for 2 simple semiquantitative approaches, standardized uptake value ratio (SUVR) and retention index (RI). The second part of the study included 11 amyloidosis patients (5 AL and 6 hereditary ATTR) without increased wall thickness to which the optimal cutoff values of SUVR (>1.09) and RI (>0.037 min-1) were applied prospectively. Results The diagnostic accuracy of visual inspection of [11C]PIB uptake was 100% in discriminating CA patients with increased wall thickness from controls. Semiquantitative [11C]PIB uptake discriminated CA from controls with a 94% (95% confidence interval [CI]: 80% to 99%) sensitivity for both SUVR and RI and specificity of 93% (95% CI: 66% to 100%) for SUVR and 100% (95% CI: 75% to 100%) for RI. [11C]PIB uptake was significantly higher in AL-CA than in ATTR-CA patients (p  Conclusions In a dual-center setting, [11C]PIB PET was highly accurate in detecting cardiac involvement in the main amyloid subtypes, with 100% accuracy in AL amyloidosis. A proportion of amyloidosis patients without known cardiac involvement were [11C]PIB PET positive, indicating that the method may detect early stages of CA.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    19
    Citations
    NaN
    KQI
    []