A convergence relationship between slip transmission and grain boundary migration in nanocrystalline nickel

2021 
Abstract In the present study, a geometric factor M proposed to predict slip transmission across grain boundaries (GBs) was lent to explore the factors influencing the stress-driven GB migration behaviors in nanocrystalline nickel under high strain rate loading. By confronting the relationship between slip systems in neighboring grain of the samples before and after high-rate loading, it is found that the geometric factor M of the remaining nano-grains in the impacted samples shifts to smaller values. This apparent correlation between GB migration and the geometric factor M can be understood in terms of two factors: the angle α between slip plane traces on the GB and the residual dislocation deposited at the GB plane to ensure the Burgers vector unity. Both contribute to slip transmission across GBs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    0
    Citations
    NaN
    KQI
    []