Diagnostic value of multislice computerized tomography angiography for aortic dissection: A comparison with DSA

2017 
The aim of the present study was to compare multislice computed tomography angiography (MSCTA) and digital subtraction angiography (DSA) in the diagnosis of aortic dissection. In total, 49 patients with aortic lesions received enhanced computed tomography scanning, and three-dimensional (3D) images were reconstructed by volume rendering (VR), maximum intensity projection (MIP), multiplanar reformation (MPR) and curved planar reconstruction (CPR). The display rate of the entry tear site, intimal flap, true and false lumen from each reconstruction method was calculated. For 30 patients with DeBakey type III aortic dissection, the entry tear site and size of the first intimal flap, aortic maximum diameter at the orifice of left subclavian artery (LSCA), distance between the first entry tear site and the orifice of LSCA, and maximum diameter of aortic true and false lumens were measured prior to implantation of endovascular covered stent-grafts. Data obtained by MSCTA and DSA were then compared. For the entry tear site, MPR, CPR and VR provided a display rate of 95.92, 95.92 and 18.37%, respectively, and the display rate of the intimal flap was 100% in the three methods. MIP did not directly display the entry tear site and intimal flap. For true and false lumens, MPR, CPR, and VR showed a display rate of 100%, while MIP only provided a display rate of 67.35%. When MSCTA was compared with DSA, there was a significant difference in the display of entry site number and position (P 0.05). In conclusion, among the 3D post-processing reconstruction methods of MSCTA used, MPR and CPR were optimal, followed by VR, and MIP. MSCTA may be the preferable imaging method to diagnose aortic dissection and evaluate treatment of endovascular-covered stent-grafting, preoperatively.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    3
    Citations
    NaN
    KQI
    []