Evaluation of equivalent friction damping ratios at bearings of welded large-scale domes subjected to earthquakes

2021 
The major sources of damping in steel structures are within the joints and the structural material. For welded large-scale single-layer lattice domes subjected to earthquake ground motions, the stick-slip phenomenon at the bearings is an important source of the energy dissipation. However, it has not been extensively investigated. In this study, the equivalent friction damping ratio (EFDR) at the bearings of a welded large-scale single-layer lattice dome subjected to earthquake ground motions is quantified using an approximate method based on the energy balance concept. The complex friction behavior and energy dissipation between contact surfaces are investigated by employing an equivalent modeling method. The proposed method uses the stick-slip-hook components with a pair of circular isotropic friction surfaces having a variable friction coefficient to model the energy loss at the bearings, and the effect of the normal force on the friction force is also considered. The results show that the EFDR is amplitude-dependent and is related to the intensity of the ground motions; it exhibits complex characteristics that cannot be described by the conventional models for damping ratios. A parametric analysis is performed to investigate in detail the effects of important factors on the EFDR. Finally, the friction damping mechanism at bearings is discussed. This study enables researchers and engineers to have a better understanding of the essential characteristics of friction damping under earthquake ground motions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []