Distribution and emissions of trace elements in coal-fired power plants after ultra-low emission retrofitting

2020 
Abstract Various hazardous trace elements emitted from anthropogenic activities are attracting increasing public awareness. This study comprehensively explored the distribution and emissions of trace elements in coal-fired power plants (CFPPs) after ultra-low emission retrofitting by conducting field experiments, literature surveys, and model calculations. High levels of volatile Hg and semi-volatile As/Pb were mainly observed in fly ash and gypsum (96.6%–98.5%), while the content of non-volatile Cr in bottom ash was 9.23%. The Hg and As/Pb removal efficiencies were remarkably improved by ultra-low emission retrofitting, increasing by 5.67% and 2.08%/2.63%, respectively. However, ULE retrofitting only slightly affected (0.17%) non-volatile elements. These improvements were mainly attributed to the low-low-temperature electrostatic precipitator. Owing to the enhanced particle-capturing efficiencies, the concentrations of trace elements in the emitted gas of the tested CFPPs were low, ranging from 0.21–1.50 μg/m3, but accounted for a high proportion of the gas phase (61.8%–100%). Based on the national database of coal quality and their behaviour in CFPPs, we found that most of the concentrations of trace elements emitted from Chinese CFPPs were significantly lower than the internationally existing emission limits. However, owing to the skewed distribution characteristics of the emitted concentrations, we suggest issuing or revising the corresponding emission limits and improving the control of intense trace element pollution in China.
    • Correction
    • Source
    • Cite
    • Save
    46
    References
    7
    Citations
    NaN
    KQI
    []