Surface reactions of metal clusters. II. Reactivity surveys with D2, N2, and CO

1985 
Reactions on the surface of a variety of transition metal clusters have been studied in the gas phase at near room temperature using a newly developed fast-flow reaction device. Initial examples of the use of this device are provided by survey studies of the reactivity of iron, cobalt, nickel, copper, and niobium clusters in contact with low concentrations of D2, N2 and CO. Dissociative chemisorption of D2 is found to occur with dramatic sensitivity to cluster size in the cases of iron, cobalt, and niobium clusters, the detailed pattern of reactivity differing markedly for each metal. The corresponding reaction is also observed with nickel clusters, but here the reactivity shows only a slow, steady increase with cluster size. Copper clusters are found to be completely unreactive to H2 chemisorption under these conditions. Molecular nitrogen is found to chemisorb readily to clusters of cobalt and niobium, with a reactivity pattern very similar to that observed with D2. Iron clusters are found to show slight reactivity with N2; only a small amount of chemisorption is observed on the most reactive clusters at high N2 concentration, but the pattern of this reactivity with cluster size is consistent with that observed in D2 chemisorption. In contrast to these highly structured reactivity patterns of D2 and N2, carbon monoxide is found to show only a slow, monotonic increase in reactivity with cluster size. It is suggested that these dramatic reactivity patterns for chemisorption on metal clusters provide stringent tests for future theories as to the nature of chemisorption on metal surfaces at a detailed, molecular level.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    342
    Citations
    NaN
    KQI
    []